Bogomolov Conjecture over Function Fields for Stable Curves with Only Irreducible Fibers
نویسنده
چکیده
Let k be a field, X a smooth projective surface over k, Y a smooth projective curve over k, and f : X → Y a generically smooth semistable curve of genus g ≥ 2 over Y . Let K be the function field of Y , K the algebraic closure of K, and C the generic fiber of f . For D ∈ Pic(C)(K), let jD : CK → Pic 0(C)K be an embedding defined by jD(x) = x − D. Then, we have the following conjecture due to Bogomolov.
منابع مشابه
Zhang’s Conjecture and the Effective Bogomolov Conjecture over Function Fields
We prove the Effective Bogomolov Conjecture, and so the Bogomolov Conjecture, over a function field of characteristic 0 by proving Zhang’s Conjecture about certain invariants of metrized graphs. In the function field case, these conjectures were previously known to be true only for curves of genus at most 4 and a few other special cases. We also either verify or improve the previous results. We...
متن کاملBogomolov Conjecture for Curves of Genus 2 over Function Fields
In this note, we will show that Bogomolov conjecture holds for a non-isotrivial curve of genus 2 over a function eld.
متن کاملON THE HYPERBOLICITY OF SURFACES OF GENERAL TYPE WITH SMALL c1
Surfaces of general type with positive second Segre number s2 := c1 − c2 > 0 are known by results of Bogomolov to be algebraically quasihyperbolic i.e. with finitely many rational and elliptic curves. These results were extended by McQuillan in his proof of the Green-Griffiths conjecture for entire curves on such surfaces. In this work, we study hyperbolic properties of minimal surfaces of gene...
متن کاملGonality of Dynatomic Curves and Strong Uniform Boundedness of Preperiodic Points
Fix d ≥ 2 and a field k such that char k d. Assume that k contains the dth roots of 1. Then the irreducible components of the curves over k parameterizing preperiodic points of polynomials of the form z + c are geometrically irreducible and have gonality tending to ∞. This implies the function field analogue of the strong uniform boundedness conjecture for preperiodic points of z + c. It also h...
متن کاملFunction Fields of One Variable over PAC Fields
Function Fields of One Variable over PAC Fields by Moshe Jarden, Tel Aviv University and Florian Pop, University of Pennsylvania In this note we give evidence for a conjecture of Serre and a conjecture of Bogomolov. Conjecture II of Serre considers a field F of characteristic p with cd(Gal(F )) ≤ 2 such that either p = 0 or p > 0 and [F : F ] ≤ p and predicts that H(Gal(F ), G) = 1 (i.e. each p...
متن کامل